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An extensive set of numerical simulations is performed to synthesize the behaviour 
of a barotropic flow over isolated topography on anf-plane and on a /3-plane. The 
model is based on the quasi-geostrophic vorticity equation, where the dissipation 
terms have been retained. The use of open boundary conditions, following the method 
described by Orlanski (1976), allows detailed simulation of time-dependent flows over 
long periods. 

On thef-plane, the ultimate solution is always characterized by a typical vorticity 
field with an anticyclonic vortex trapped over the topography, but different transient 
regimes occur, related to the importance of advection versus topography effect : direct 
advection of the positive vortex for strong flows ; eddy interactions and double-vortex- 
structure appearance for weaker flows ; oscillatory regimes with topographic trapped- 
waves generation for very strong vorticity-interaction cases. 

On the /3-plane, and for prograde flows, the situation is complicated by a Rossby 
wave pattern extending mainly downstream but also having an upstream component 
corresponding to zonal waves. For retrograde flows the obstacle does not excite 
Rossby waves but a transient response with zonal waves whose lifetime depends on 
the nonlinearity. 

1. Introduction 
Since the pioneering work of Proudman (1916) and Taylor (1917), many studies 

have been made on the typical property of a flow in a rapidly rotating system 
independent of the coordinate parallel to the axis of rotation. Although the existence 
of the so-called Taylor columns supposes that the flow is steady, inviscid and 
homogeneous, it  seems pertinent to conjecture a physical relevance of this type of 
phenomenon to geophysical situations, especially in the ocean. Such approaches are 
strongly relevant to the increasing interest in studying topographic effects: in the 
ocean, bottom topography is thus suspected to be a possible eddy source for meso- 
scale and large-scale flows, and possibly to influence the mechanisms of barotropic 
and baroclinic instabilities. In many areas, oceanographic data suggests that sub- 
marine topography plays this important role. Concerning the mesoscele, we can refer 
to the observations of Meincke (1971), Vastano & Warren (1976), Owens & Hogg 
(1980), Richardson (1980), Gould, Hendry & Huppert (1981) etc. which can be 
related to the Taylor-column problem. 

Following Hide (1961), who conjectured that Jupiter’s Great Red Spot was a 
manifestation of a Taylor column, many investigations have been undertaken, both 
theoretical and experimental, to understand and extend this concept in a more 
realistic context. Hide & Ibbetson (1966) and Hide, Ibbetson & Lighthill (1968) 
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published experimental studies extending the original Taylor experiments. It was 
established in particular that, in laboratory situations, the fluid within the column 
was never stagnant but had a more complex structure. More recently, new experi- 
ments by Vaziri & Boyer (1971), Davies (1972), Boyer & Davies (1982) and Boyer, 
Davies & Holland (1984) refined the knowledge of controlling parameters and viscous 
effects in the Taylor column. Some of these recent studies, and others from Vaziri 
(1977), and McCartney (1975) include the /3-effect. A good survey of laboratory 
experiments in the field was published by Baines & Davies (1980) both for homo- 
geneous and stratified flows. 

Ingersoll (1969) presented the first nonlinear analytical calculations, based on the 
conservation of potential vorticity in steady quasi-geostrophic flow. This work was 
extended by Huppert (1975) who gives a criterion for Taylor-column formation with 
axisymmetric obstacles in the f-plane quasi-geostrophic hypothesis. The flow is 
shown to be deviated by the topography, on the left and then on the right, looking 
downstream, and with a fore-and-aft symmetry. The vorticity field is characterized 
by an anticyclonic eddy trapped on the topography. Johnson (1978a) points out the 
existence of a steady solution to the finite-Rossby-number equations of motion 
corresponding to  a situation where two vortices of opposite signs are trapped by a 
right circular cylinder in a uniform stream. The negative vorticity is located over the 
topography and the patch of positive vorticity is shifted rightward (looking 
downstream). Kozlov (1981) generalized the calculation of the cyclonic eddy position 
for other topographies. 

The first to  examine the effect of variable Coriolis parameter was Ingersoll (1969), 
for a westward flow and large p. McCartney (1975) obtained analytical solutions of 
the inertial quasi-geostrophic /3-plane equations for a steady two-layer flow with 
moderate stratification; in this work, the homogeneous single-layer case is also 
considered, as a limiting case. For eastward flows, he found a meandering stationary 
wake downstream of the bump, and determined the influence of /3 on Taylor-column 
occurrence and position. Hogg (1973), McCartney (1975) and Johnson (1977, 1979) 
included stratification in their approaches ; it could be shown that the continuously 
stratified Taylor column looks like a conical vortex of height sufficient to reach 
the free surface. 

The non-stationary aspect of this class of problems was first investigated by 
Huppert & Bryan (1976) ; with a numerical model they looked a t  the flow initiation 
of a stratified fluid over an isolated seamount on the f-plane, neglecting bottom 
friction. Their model is three-dimensional with nine levels in the vertical and has 
periodic horizontal boundaries. The flow is started from rest and, during the time of 
their simulation, they found two regimes, depending on the amplitude of the in- 
coming flow velocity. They interpreted their results by using rather simple analytical 
calculations based on an approximate representation of their stream functions in 
terms of line vortices. With this model they predicted, for a given topography, the 
transition between the two kinds of regimes. However, because of the periodic 
boundary conditions used, these numerical simulations had to be stopped when the 
perturbations drifting downstream reappeared upstream, making it difficult to 
obtain long-term solutions. 

More recently, James (1980) included downstream boundary conditions which 
allowed vorticity to be advected smoothly out of the domain: this study was devoted 
in particular to the topography-induced forces in both steady and transient 
situations. 

The aim of this paper is to  synthesize the different typical responses of a 
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quasi-geostrophic homogeneous flow impinging on an isolated seamount by using an 
open-boundary numerical model, and to point out the transient or steady character- 
istics of the observed features. The use of upstream and downstream radiative 
boundary conditions makes it possible to follow the evolution of the transient 
response of the flow over long periods of time on the f-plane, and the P-plane. The 
homogeneous quasi-geostrophic restriction of the problem allows a large set of 
characteristic parameters in oceanic flows to be covered without excessive computing 
cost. Section 2 gives the details of the model and the boundary conditions used, 
and $3  analyses the typical parameters of the problem. Section 4 describes the 
different numerical solutions obtained in the f-plane approximation in relation to the 
advection and vorticity interaction effects ; the initiation processes and the steady 
solutions are examined and discussed. Section 5 is related to the contribution of the 
planetary vorticity gradient in the present framework : the existence of Rossby waves 
is pointed out in addition to the previous typical responses of flows. 

2. Themodel 
2.1. Description 

We consider the flow of a barotropic fluid in a rectangular oceanic box. The domain 
has two solid boundaries and two open boundaries; generally the first ones are 
situated north and south and the second ones east and west, so that the domain looks 
like a zonal channel. Horizontal dimensions are denoted by LX and L Y and the depth 
of fluid is scaled by D (figure 1). The bottom topography is measured by its deviation 
h(z ,  y) above the sea floor ( z  = - D ) .  The whole system is rapidly rotating: the Coriolis 
parameter f varies with latitude y so that its value is f o  for the mid-latitude. 

Initially the fluid is at rest and at time t = 0 a pressure gradient in the y-direction 
is introduced in such a way that a mean flow is generated in the x-direction. 
Alternatively, we start from a uniform flow and at t = 0 the topography rises, 
instantaneously or progressively during the first timesteps. These two initial con- 
ditions are equivalent provided that the initiation timescale is much smaller than 
the flow timescale. 

2.2. Governing equations 
The two fundamental assumptions used here are the homogeneous fluid and the 
quasi-geostrophic hypothesis. The barotropic behaviour of the flow is a strong 
constraint in comparison to the real ocean. An overestimation of the topographic 
effect will be present, due to the hypothesis that horizontal velocity is not depth 
dependent. 

The Rossby number E is defined as: 
U c = -  

foL’  

where U and L are velocity and length characteristic scales of movement. In  the scale 
of our model, E is small and justifies the quasi-geostrophic approximation used. 
Moreover, we require that the relative depth DIL and the ratio Lla (where a is the 
Earth radius) are also small and of order E (Pedlosky 1979). This leads to the 
linearization of the Coriolis parameter and then to the P-plane approximation. The 
quasi-geostrophic analysis of mesoscale oceanic flows shows the consistency of the 
rigid-lid assumption, as we look at  planetary movements with large period compared 
to the Earth’s rotation; gravity waves and Kelvin waves are thus filtered. 

The purely geostrophic balance near a steep topography implies that motion is 
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h LX 

FIGURE 1. System geometry. 

along the isobaths. I n  this paper we are interested in cases where this constraint is 
not present; thus we suppose the relative topography height is not too big compared 
to the local Rossby number. 

Under these conditions, the equations of the problem are : 

5 = A$, (2) 

l j  is the vorticity and $ the stream function ( u  = -a+/ay,v = a$/ax). All the 
variables are non-dimensionalized ; the timescale is chosen as the advection timescale 

In  the present model we use two different parametrizations for the last term D, 
L/  u. 

which represents lateral friction: 

-the ‘Laplacian’ lateral friction 

D, = AV4$, A > 0, 

with A = 1/Re = AH/ UL, where A ,  is the classical horizontal turbulent viscosity and 
Re a horizontal Reynolds number; 

-the ‘ biharmonic ’ lateral friction 

D, = A,V6$, A,  < 0, 

which acts as a kind of filter for the enstrophy contained in the small scales. The 
parameter r characterizes the bottom friction. 

2.3.  Numerical scheme 

The numerical scheme is based on a classical finite-difference method. Second-order 
difference approximations are used for both space and time derivatives. The vorticity 
equation (1) is discretized using a leapfrog scheme which assures a second-order 
accuracy. The nonlinear term J($, 6 )  is represented by simple central differences in 
time and with the Arakawa’s (1966) form in space which conserves vorticity, energy 
and enstrophy when integrated on a closed domain. The dissipative terms will induce 
numerical instability. For this reason the bottom friction is evaluated through a 
semi-implicit scheme, averaging the values a t  the preceding and succeeding time 
levels; likewise the D, term is always lagged one time-step. The Laplacian terms are 
calculated by following the classical five-points procedure. The stream function $ 
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and the relative vorticity E are computed at the same gridpoints separated by 
distances Ax and Ay. Except for special tests the mesh spaces are the same in both 
directions and have 5 or 10 km dimensional lengths. The finite-difference version of 
the Poisson equation (2) is solved using an  NCAR subroutine package employing an 
FFT method with cyclic reduction (Hockney 1971). The successive evaluation of 6 
at each time-step is simply deduced from (1). 

2.4. Boundary conditions 

Each calculation of + and 6 for the interior points requires a knowledge of boundary 
data everywhere. The boundary vorticity needs to be calculated after the interior 
vorticity and the stream function. On the other hand, the boundary stream function 
needs to be known before any calculation at each time-step. 

The chosen boundary conditions on solid boundaries such as north and south walls 
are : 

- to  keep constant values of the stream function + in such a manner as to 
impose a constant flow rate through the domain: we impose a constant 
stream function on the north wall $ = $N and on the south wall $ = $s; 

- to use a slip condition for the boundary vorticity ( E  = 0). 
For the open boundaries, the problem is more difficult because we want the 

upstream and downstream computational boundaries to  be transparent to signals 
impinging on them. The use of open boundary conditions is of great interest for the 
numerical simulations of local dynamics. That is particularly the case in the field of 
oceanography where local processes have to be understood on their own, but with 
dynamical connections to the surrounding area. The ideal condition needed on the 
boundaries would allow perturbations generated inside the domain to  go through the 
boundary without being distorted and without modifying the interior solution and 
its further evolution in time. As Orlanski (1976) states, the appropriate formulation 
depends largely upon the characteristic equations to be simulated. A variety of 
methods have been developed to  achieve open boundary conditions in many cases, 
and especially when the problem is characterized by a hyperbolic equation, which 
is a typical feature of many ocean mesoscale problems. The most widely used are 
derived from the Sommerfeld radiation condition for the waves : 

a# a# - + c -  = 0. 
at ax (3) 

Kreiss (1966) was among the first to  implement this condition in considering the 
perturbation t o  be radiating outside the domain like a single wave with phase velocity 
c = Ax/At. When the numerical solution is wavelike with a phase velocity close to 
the numerical velocity AxlAt this method works quite well. But, the equations of 
mesoscale processes are nonlinear, the perturbations are not waves and, even if they 
were, the dispersion characteristics are not known. Orlanski improved the approach 
by calculating a local and instantaneous propagation velocity close to  the boundary 
from the neighbouring interior gridpoints using a leapfrog finite-difference represen- 
tation of the radiation condition. This propagation velocity is computed at each 
time-step and is different from point to point at the open boundary. For each 
boundary gridpoint the variable is estimated through radiation conditions by using 
this local velocity. The calculation can be done for each variable involved in the 
problem. With that successive-approximation numerical process, the real disturbance 
can thus be propagated. As Orlanski notes, the boundary conditions do not depend 
upon global quantities such as mean-flow properties. 
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In the present work, we use that procedure. Because topography primarly acts as 
a vorticity disturbance and the vorticity equation is hyperbolic, we compute a 
propagation velocity of the perturbation at each gridpoint next to the boundaries 

K - 2 -  K from the vorticity E : 
fs-1 EB-1 

g1 + tg1; - 2Eg; ' V =  

where K is the time index, and B, B - 1, and B - 2 represent a boundary grid-point 
and its first and second normal interior neighbours. This velocity is then used to obtain 
f at  the corresponding open-boundary gridpoints, upstream and downstream. The 
stream function is evaluated with the same propagation velocity computed from the 
vorticity field. Calling q5 the variable to be estimated the boundary value then will 
be : 1-v 2v 

l+v l + V  g + 1 =  - q5g-1+-q5:-l. 

On condition that the mesh is sufficiently refined, this method appears to work 
successfully, as can be seen from figures 2, 12 and 13. 

3. Parameters 
Some of the parameters are the same for all the numerical experiments: the rotation 

parametersf, = s-l, Po = 2 x lo-" m-l s-l and the fluid depth D = 4000 m. The 
other parameters vary from experiment to experiment. However, looking at  (1) and 
(2), i t  is clear that only a few non-dimensional parameters have to be considered. Each 
of these non-dimensional parameters represents a dynamical effect : 

/L = h, the topography dynamical effect, based on the maximal topography height 

@, the planetary vorticity gradient ; 
r ,  the bottom friction; 
A, the lateral friction. 

Every physical mechanism is concentrated through these four parameters. 
The parameter ,u implies that the topography height does not play an independent 

role but has to be related to the dynamical effect characterized by the Rossby 
number S. The quasi-geostrophic frame in which we are supposes, in addition to the 
smallness of E ,  that the relative height h / D  is of order E so that /L = O(1). The topo- 
graphy slope has also to stay smooth enough so that I Vh I = O ( D / L ) .  The bump 
shape is chosen as circularly symmetric Gaussian : 

h ( z ,  y) = h, edrlR)* 

with r2 = ( ~ - z , ) ~ +  ( ~ - 9 , ) ~  and R = +L. The range of h, is between 20 m and 800 m 
and we consider two different topography 'diameters' : 40 km and 100 km. According 
to this diameter, the domain width L Y is either 250 km or 500 km, and the domain 
length LX = L Y or 2L Y. The value of the mean flow velocity U is varied between 
0.01 m s-' and 0.1 m s-l (in both eastward and westward directions). It follows that 
the topography parameter /L will be varied up to about 30. 

The parameter P = Po L2/U is a measure of the dynamical importance of p, which 
represents all the spherical effects acting on the flow. In a barotropic model it operates 
like a topographic effect, i.e. a slope pitching down equatorward. A physically 
relevant value for the bottom-friction coefficient r is difficult to determine in the 

SD 
h, ; 
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oceanic context, but we expect r < O(1).  For the lateral friction, we chose a viscous 
timescale of the order of that at the spacescale of the grid. 

In the ocean the most energetic timescales are in the range of a few days to a few 
months (Schmitz & Holland 1982). In comparison, that advective timescale associated 
with a seamount of scale L is L/  U ,  that is to say of the order of ten days for mesoscale 
topography. Consequently, it appears that the study of transient flows at these 
timescales can be as relevant as the study of steady flows. 

4. f-Plane flow 
In the following section we suppose p = 0: the effect of the planetary vorticity 

gradient is not taken into account. This case corresponds to most of the previous 
studies on the subject described in the introduction. It is relevant to real problems 
if the topography has restricted horizontal scale. 

Three successive stages can be distinguished : 
- the initiation period (t  < L / U )  which is roughly common for all flows; 
- the intermediate period (t  = O ( L / U ) )  which can last a few times the 

timescale L / U  and where the flow looks well diversified in terms of input 
parameters and time; 

- the final stage where the flow becomes steady ( t  S L / U ) .  
The initiation of a flow above an isolated seamount was first described by Huppert 

& Bryan (1976). Although they considered stratified fluid, they did not seem to 
observe behaviour specifically associated with stratification (for the duration of the 
tests they investigate) : with a homogeneous fluid the mechanisms are basically the 
same. In the first time-steps two eddies are created on the topography, the upstream 
eddy is associated with negative vorticity, the downstream eddy with positive 
vorticity. This first period can easily be interpreted in terms of vortex stretching or 
compression. 

This situation changes rapidly and the two eddies rotate clockwise around the hill. 
Then a combination of several mechansisms occurs which determines the further flow 
evolution with time. They are dominated by two principal mechanisms: 

- vorticity interaction which corresponds to nonlinear processes and is a 

-advection processes whose intensity is a function of the strength of the 

Different regimes are possible, depending on the relative importance of these two 
effects, but also on dissipation, occurrence of closed streamlines, etc. In  the following, 
we present the main typical solutions, and we analyse energy and enstrophy 
variations to obtain a synthetic view. 

Strong advection (p small) 

When the velocity of the incoming flow is strong enough and the topography not 
too high, the advection process plays the dominant role. The cyclonic eddy is 
influenced by the mean flow which tends to advect i t  downstream, while the 
anticyclonic eddy remains in the vicinity of the seamount, slowly moving closer to 
the topographic axis. An example is presented in figure 2, with vorticity patterns. 
We notice that the open-boundary model works well for this kind of transient flow, 
since the cyclonic eddy can pass through the boundary without undergoing distortion 
and without influencing the subsequent development of the interior flow. 

function of topographic and incoming flow characteristics ; 

incoming flow. 

4.1. Typical solutions 
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FIGURE 2. Vorticity field, strong advection effect: p = 4; f3 = 0; r = 0 ;  A = 0.025. 
(a), at time T = 0.36; ( b ) ,  1.44; (c), 2.88; (d), 4.32; (e) 5.76; (f), 7.20. 

After some advection time, all that remains in the domain is the anticyclonic eddy 
trapped on the topography. We reached a solution very close to the analytical 
solution of Huppert (1975) with an induced vorticity which is defined by: 

when no closed streamline exists. We can easily deduce that, in this case, the 
dimensional induced vorticity is independent of the velocity U: 

Thus topography will produce a vorticity disturbance whose intensity is independent 
of the mean flow. 

Such configurations are obtained when the topography parameter is such that : 

o < p < < d *  

From our tests, pd N 11. It must be noticed that this range of values includes the 
value pc characteristic of Taylor-column appearance (with a Gaussian topographic 
profile, the critical corresponding pc  is found to be pc N- 6.3). Figure 3 shows the type 
of solution when pc < p < pd and we can see the trapping of closed streamlines on 
the bump. 

Strong vorticity interaction (p large) 
When the induced vorticity is strong enough compared to the advection effect, i.e. 

for growing values of p, the cyclonic eddy remains first in the vicinity of the 
topography : after a rotating movement the two eddies stay trapped in the transverse 
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FIGURE 4. Streamlines and vorticity field, trapped paired eddies 
A = 0.01. (a),  at time T = 0.92; (b ) ,  1.38; (c), 

: p = 12.5; /3 = 0; r = 0; 
1.84. 

direction (figure 4). In  all cases the cyclonic eddy centre is shifted from the bump 
on the right side of it, looking downstream. Such a flow can be stable during a time 
of order LlU.  Beyond this time the positive vorticity structure is progressively 
advected by the main flow and leaves the domain through the open boundary, as 
in all the previous cases, when bottom friction is absent or weak. This holds in all 
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the cases studied whatever p may be. The only way to  get a steady solution with the 
two eddies trapped on the topography would be if there were strong (unrealistic) 
bottom friction. 

If the correct flow parameters are taken we can obtain transient solutions similar 
to Johnson (1977, 1978) and Kozlov (1981) steady solutions: the flow looks like a 
potential flow generated by a vortex pair. Figure 5 shows such an example in a typical 
case where two closed streamline zones are present corresponding to two Taylor 
columns. 

The previous cases arc obtained for p greater than the critical value pa. If we 
continue to  increase this parameter, the vorticity interaction is enhanced and we 
observe also a larger but unstable closed streamline pattern, which gives a more 
complex type of configuration. In  a first stage the flow presents a strong analogy with 
the preceding cases. The two eddies interact and come to a transverse position, but 
the cyclonic eddy goes quickly beyond the median position and is enwrapped in the 
anticyclonic eddy. This situation is unsteady and i t  appears to be an oscillatory regime 
where the eddies' centres are oscillating on both sides of the topography. After a time, 
stabilization occurs when the cyclonic eddy is escaping downstream and advected 
outside the topography area and then the domain. Often the oscillation of the two 
vorticity cells is not complete and a strong eddy interpenetration and a splitting of 
vorticity structures in smaller scales can be observed: then a part of the cyclonic 
structure can go round the hill while the remaining part oscillates. The process goes 
on with a coalescence of the different patches of vorticity and begins again. The 
sketches in figure 6 show the successive mechanism. James (1980). has already 
mentioned this extreme behaviour with a similar model including bottom friction. 
Here, the experiments are carried out with and without bottom damping. 

4.2. Energy and enstrophy disturbances 

The topographic flow disturbance is measurable through integrated quantities like 
the energy and the enstrophy all over the domain. I n  non-dimensional form, we define 
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FIGURE 6. Vorticity field, circular trapped waves; p = 18; /3 = 0 ;  r = 0; A = 0.005; at time 
T = 1.080 for (a), and timestep AT = 0.432 for the following figures. (The calculation domain is larger 
than the represented area.) 

the disturbance total kinetic energy and the disturbance total enstrophy respectively 
as : 

where 9 is the domain area and E,, is the undisturbed flow non-dimensional kinetic 
energy. 

In figure 7 we present E, as a function of time for the three main typical regimes : 
- For smallest values of p, case (a), the energy E, increases smoothly at first, 

crosses a maximum and afterwards becomes quite constant. This is observed 
even for values above the critical valuep, corresponding to the Taylor-column 
appearance. The energy maximum is not associated with any particular 
physical event, but is only the combination of two opposite effects; trapping 
and shedding. On the contrary, the enstrophy maximum corresponds to the 
ultimate position of the two paired eddies on the topography; their 
separation causes a fast enstrophy decay. 

- When p is in the narrow range of values immediately larger than the previous 
ones, about 11 < p < 13 for r = 0, the energy curve presents an inflexion 
before reaching its maximum, case (c). This inflexion arises at the same 
time that the enstrophy itself reaches its maximum value, that is to say when 
the eddies are paired (figures 4 and 8). The duration of this stage can be 
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FIQURE 7. Perturbation energy E, as a function of time T: /3 = 0; r = 0; A = 0.005. 
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FIGURE 8. Perturbation energy E, and enstrophy E, versus time 
T bottom friction influence, /I = 12.5; p = 0; A = 0.01. 
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understood as the lifetime of the paired eddies. The E, and E, subsequent 
variations are similar to the previous case. 

- For largest values of p, large-amplitude oscillations appear more intensively 
for energy than for enstrophy. As before, the energy passes through a 
maximum, but this happens after several oscillations whose period is that 
of the trapped circular waves’ normal modes which have been already 
pointed out and will be examined a t  the end of this section. 

The graphs in figures 7 and 8 case (a) are drawn for the case where bottom friction is 
negligible (T = 0). Nevertheless the main behaviour is the same if this assumption is 
not made, except that  we obtain smaller levels for energy and enstrophy (figure 8 b ) .  
Ekman pumping in the bottom boundary layer is reducing the vorticity generated 
on the topography, but a trapping effect still exists. The shed-eddy downstream 
motion is slackened ; but the vorticity interaction is also reduced because the vorticity 
structures are less intense for a given advection. Moreover, the bottom friction allows 
stagnant fluid inside the closed streamlines to be really obtained : one can speak about 
the Taylor column with its original meaning when the flow is established. 

The turbulent-viscosity influence is more difficult to identify partially because of 
the ambiguity of the turbulent-viscosity concept, and its role in modelling the 
dissipation of enstrophy at high wavenumbers. However the diffusive mechanism 
explains the destabilization of the solution with two paired eddies, which leads to  
the unique eddy solution after a long time. The solutions studied by Johnson (1977, 
1978) and Kozlov (1981), in particular, could not last for a real fluid. 

The two dissipative mechanisms, bottom and lateral friction, have timescales much 
larger than that characteristic of the flow. The viscous timescale is typically of the 
order of several years compared to an advective timescale which can extend from a 
few to ten days. Although the bottom friction will probably be the primary 
mechanism for energy dissipation (Holland 1978), and in spite of existing works on 
the bottom boundary layer, no satisfying parametrization is available ; nevertheless 
the bottom-friction characteristic timescale is probably large compared t o  the 
advective timescale. Consequently in the context of oceanic flows, we can ensure that 
these dissipation processes do not modify the main aspects and chronology of the 
regimes, presented before for any given value of p. 

The diagrams in figures 9 and 10 present the energy and enstrophy variations versus 
the parameter p, assuming the viscous dissipation is similar and the bottom friction 
is zero. The retained value for the kinetic energy E, is the value which is obtained 
in a quasi-steady regime. In  the enstrophy diagram we represent in addition the 
maximum value reached for each trial. This value corresponds to the critical position 
of the two paired-eddies solution. We can see on these E, and E, curves a change 
in the evolution of their slopes as soon as we go over the level p = p, where p, 
corresponds to the steady-state criterion for the Taylor-column initiation. That 
means that a part of the flow which was present initially on the topography, cannot 
pass over i t  and then is diverted around. Beyond this level a part of the flow is 
somewhat inhibited. For a large range of p (p > p,), this inhibition stays weak but 
for bigger values the inhibition role is really taking a dynamical predominance. We 
can thus see that:  

-if p < p,, E, and E, are growing according to a law close to  the theoretical 
law issued from the analytical calculation E, - p2 and E, - pz;  

- if p > p,, we reach a roughly standing level for both energy and enstrophy. 
These quantities increase very slowly and become quite constant for the 
largest values ofp. This behaviour can be explained by the fact that  the mean 
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FIGURE 9. Perturbation energy E, versus p :  B = 0; r = 0. 

FIQURE 10. Perturbation enstrophy E, versus p : quasi-steady ( x ) ; 
maximum value (0); p = 0; r = 0. 

flow velocity which passes over the topography will become a smaller and 
smaller part of the global mean flow velocity for increasing p. The mean 
velocity which is really ‘felt ’ by the seamount (and which is generating the 
disturbance energy and enstrophy) is almost constant and keeps a value close 
to the one it has when p = pc. 

We have noted from figure 7 the existence of strong oscillations of the flow for big 
values of ,u. The structure of these transient features is particularly clear on the 
vorticity field, as illustrated by figure 6: a part of the positive vortex shed on the 
right of the topography during the period of flow initiation (figure 6 a )  enters the 
anticyclonic vortex centred over the bump and seems to be trapped and to travel 
around it (figures 6 b ,  c, d).  A more detailed analysis of vorticity and stream-function 
patterns suggests some wavelike perturbation with two azimuthal modes and a phase 
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FIQURE 11. Circular wave frequency versus p, first mode frequency : = 0 ; r = 0. 

moving clockwise around the topography. Rhines (1969) has computed such a 
quasi-geostrophic wave solution around paraboloidal seamounts looking radially like 
Bessel functions, and with one or several azimuthal modes; for these solutions, the 
dispersion relation implies an almost linear increase of the wave frequency with the 
relative height of the topography. From the curves of energy perturbation, typically 
as shown on figure 7, it is possible to identify the periodicity of these trapped waves, 
and we have plotted on figure 11 the corresponding frequency w ,  related to the p 
parameter. We can see the effective linear relation between w and p for the set of 
experiments which has been done in the present context. 

5. /3-Plane flow 
In  many problems of geophysical relevance the horizontal lengthscales are not 

small enough to justify the hypothesis that the latitudinal variation of the Coriolis 
parameter does not affect the dynamics. 

When the /3-effect is taken into account, the flow configuration looks markedly 
different because a Rossby wave pattern can be excited. Owing to the B-effect, a large 
area will now be affected by the disturbance, and not only a region close to the bump. 
In contrast to thef-plane case, the flow direction becomes a parameter and we are led 
to consider both eastward and westward flow. 

5.1. Eastward jlow 
A wave pattern is excited mainly downstream of the obstacle but with a small 
component moving upstream. This system is superimposed on the f-plane con- 
figurations which we presented previously, although the critical values which 
determine regime transition are a little higher. 

The dispersion relation derived from the steady linear equation (Lighthill 1967) 
for inviscid fluid can be written : 

and gives us two solutions. 
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FIGITRE 14(a,b). For caption see facing page. 

The first one is defined by the wavenumber K such that: 

I K12 = q+& = /3, 

and thus the non-dimensional wavelength is : 

2 K  A = -  
dB. 

It corresponds to a circular-crest steady wave, whose group velocity is the incoming 
flow velocity. The lateral spreading of the wave pattern is fast and rapidly influenced 
by the solid boundaries of our domain. Thus we must expect that  consecutive 
reflections of Rossby waves will give a complex network of incident and reflected 
waves. 

The second solution is the zonal one with a zero frequency, but, depending on the 
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FIGURE 12. Vorticity field and streamlines, Rossby wave pattern for eastward flow: p = 5; B = 4; 
r = 0.02; A = 0.01. (a) At time T = 0.72; (b ) ,  2.16; (c ,d) ,  2.88. 

wavelength in the meridional direction, the group velocity will become negative or 
positive. Indeed this velocity is defined as: 

so all the zonal structures where the non-dimensional wavelength is more than 
A, = 21c/l/P will propagate upstream. The smallest structures with wavelength less 
than A, will propagate downstream like the main trailing wave pattern. The biggest 
zonal waves represent a steady current which can go against the main flow and then 
decrease it. In  that case, the existence of the upstream open boundary is clearly 
advantageous. 

In  figure 12 we can observe an example of P-plane flow which behaves like those 
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FIGURE 13(a,h). For caption see facing page. 

previously described. Downstream the stationary Rossby wave is progressively 
extending with a group velocity approximately equal to U .  Upstream the first 
transverse mode can be guessed although the zonal waves' initiation is occurring 
rapidly during the first time-steps. Nevertheless the small induced countercurrent is 
clearly observed in front of the bump through the streamlines' spacing. (When the 
open boundary is missing, a strong distortion of the upstream streamlines appears 
because of the blocking of these structures.) 

In  the vicinity of the bump, i t  is clear that  the /?-effect does not affect the vortex- 
stretching primary mechanism and the occurrence of two vorticity structures on the 
topography. However the eddies' rotation in the clockwise sense seems to be 
favoured. This local effect coupled to  the energy radiation by Rossby waves can 
explain the small displacement of the p range for regime transition. 

For the largest values of p, the trapping of the two vorticity areas is accompanied 
by oscillations, as already mentioned with respect to the f-plane (figure 6). I n  that 
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FIGURE 13. Vorticity field and streamlines, zonal wave pattern for westward flow: ,u = 5; f l =  4; 
r =: 0; A = 0.01. (a)  At time T = 1.44; (b ) ,  2.30; ( c , d ) ,  4.32. 

case, the zonal wave excitation can last longer, and the induced countercurrent 
appears to be more intense. 

The first mode of the trapped oscillations, computed from the energy-variation 
curves, has a frequency which is very near to the corresponding f-plane frequency. 
It agrees with Rhines’ (1969) hypothesis that the ,%effect can be neglected locally over 
such a mesoscale topography. 

5.2.  Westward flow 
Forcing in the retrograde direction does not allow the excitation of Rossby waves 
and the flow configuration is very near to the f-plane configuration. The &effect 
reinforces the trapping of the negative-vorticity core on the topography. The steadi- 
ness of such a situation is rapidly obtained after exciting transient disturbances. These 
small-amplitude disturbances propagate upstream and principally downstream. 
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As in the eastward case, they can be interpreted as topography-excited waves. In  
that sense, the disturbance corresponds to the trivial solution (and only in that case) 
of the dispersion relation. The group velocity of these waves exceeds that of the 
incoming flow whatever the wavenumber. Consequently all the zonal waves will travel 
westward and not only the big structures, as before. The last ones have much larger 
group velocities and will leave the domain quickly. We present an example in 
figure 13 where we can clearly observe the initiation of the first odd mode in the 
transverse direction (figure 13a), followed by the second odd mode (figure 13b). 

6. Summary 
The detailed analysis of the extensive set of numerical experiments performed with 

the open-boundary model described in this paper has led to an overview of the 
different classes of transient regimes which can occur when homogeneous viscous flow 
is impinging on an isolated topography in a rotating system. 

I n  thef-plane case, i t  is shown that the ultimate solution is always characterized 
by a typical vorticity field with an anticyclonic vortex trapped over the topography; 
the intensity of this vortex is related to the importance of the topography, but 
limited by the Taylor-column formation process. Different transient regimes occur, 
however: for strong flows, the positive vortex generated in the initiation flow phase 
is directly advected downstream; for weak flows a stronger interaction between the 
two eddies occurs and the positive vortex is shifted to the right and trapped in the 
vicinity of the bump, leading to a double-vortex structure. All these features fit with 
the description given by Huppert & Bryan (1976) and Johnson (1978), among others. 
When the vorticity interaction is very strong, the positive vorticity field enters the 
anticyclonic eddy and excites wavelike smaller-scale vorticity structures trapped and 
travelling around the bump, just like topographic trapped waves identified by Rhines 
(1969). I n  all these cases, after a time, and because of vorticity diffusion, the vorticity 
interactions weaken and the positive field ends by escaping the vicinity of the hill 
and drifting with the oncoming flow. 

I n  the /3-plane case and for prograde flows, similar regimes occur, but are 
complicated by the presence of Rossby waves, extending downstream under a 
stationary wave pattern, and upstream as zonal currents. For retrograde flows, only 
transient zonal waves are observed downstream. 

The authors wish to  thank A. Colin de Verdikre, H.  E. Huppert, D. B. Haidvogel 
and the referees for their valuable comments. Part of the calculations have been made 
with the numerical facilities of the Centre de Calcul Vectoriel pour la Recherche in 
Palaiseau. 
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